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a b s t r a c t

The Rf–F method is a powerful graphical approach for estimating finite strain of deformed elliptical
objects, but one that students commonly find difficult to understand. We developed a program that
allows users to explore visually how deforming a set of elliptical objects appears on Rf–F plots. A user
creates or loads the ellipses and then deforms them by simple shear, pure shear, or rigid rotation. As the
ratio of the long to short axis of the ellipses (Rf) and long-axis orientations (F) change in one window, the
Rf–F plot continuously and instantaneously updates in another. Users can save snapshots of the deformed
elliptical objects and the Rf–F plots to record graphical experiments. The program provides both Rf vs. F

and polar ln(Rf) vs. 2(F) plots. The user can ‘undeform’ ellipses quickly and easily, making it possible to
inspect the ‘original’ shapes and orientations of objects, and to evaluate the plausibility of the deter-
mined strain values. Users can export information about the pebbles’ shape and orientation to spread-
sheets for rigorous statistical analysis. This program is written in Java and so can run on virtually any
operating system. Both the source code and the application will be freely available for academic
purposes.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Deformed ellipsoidal objects, such as pebbles and oolites, are
common in rocks, and they offer an intuitive, visually appealing
approach for teaching fundamental strain concepts in structural
geology. Students can easily grasp the effect of strain on an initially
spherical object and, with practice, can visualize the fate of initially
ellipsoidal markers. Furthermore, the study of deformed pebble
conglomerate and oolitic limestone provides an excellent oppor-
tunity for students to gain experience in data acquisition and error
analysis. They must also confront a host of important problems that
plague all attempts to quantify strain, such as ductility contrast
between marker object and matrix, initial shape and distribution of
marker objects, area or volume change during deformation, and the
relationship between two-dimensional strain measured in planar
sections with the three-dimensional strain experienced by rocks.

Structural geologists commonly exploit elliptical objects in their
research to quantify strain in naturally deformed rocks, understand
the development of deformation fabrics, and examine strain
gradients in folds and fault zones. The importance of this approach
to strain measurement has inspired numerous studies to overcome
its inherent limitations, or at least to understand them thoroughly.
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Through numerical experiments, Lisle (1979) tested several
methods for averaging shape and orientation data to determine the
most accurate for estimating the strain ellipse, and concluded that
the harmonic mean was the most reliable. Hossack (1968) and
Treagus and Treagus (2002) also discussed in detail the problems of
determining strain from pebble shapes in a conglomerate.

Ramsay (1967) derived the equations of the Rf–F method for
quantifying finite strain, and Dunnet (1969) showed how the Rf–F

method can be used as a practical tool for strain determination
from elliptical objects. As discussed in detail below, the Rf–F

method assumes an initially random distribution of ellipse long-
axis orientations, and a range of initial long to short axial ratios, Ri

(Table 1). Ramsay and Huber (1983) presented an especially useful,
and well-illustrated, discussion of the Rf–F method making the
technique more accessible to researchers and students. Lisle (1985)
offered a very complete and useful treatment of the method. Our
contribution is to provide a program that links deformation of
elliptical objects with Rf–F plots, giving students a visual explana-
tion of how the method works, and offering students and
researchers a tool to quickly estimate strain from outcrops and
samples.

Our program provides both the familiar Cartesian Rf–F plot and
the innovative polar plot of Elliott (1970) for comparison with the
ellipse population. Elliott’s (1970) approach employed a novel
‘‘shape factor grid’’ and a polar plot of ln(Rf) vs. 2(F) that should, in
theory, allow assessment of the initial distribution of long axes of
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Table 1
Abbreviations used in text and figures

F The angle between an arbitrary reference line and the long axis of an
ellipse. Range: �90�–90� .

Rf The final axial ratio (long axis/short axis) of any arbitrary elliptical object.
Rfmax The maximum final axial ratio of all the elliptical objects.
Rfmin The minimum final axial ratio of all the elliptical objects.
Ri The initial axial ratio of any arbitrary elliptical object.
Rimax The maximum initial axial ratio of all the elliptical objects.
Rs The axial ratio of the strain ellipse (long axis/short axis).

Fig. 1. Screen captures of the entire program window. A. Individual ellipses can be
drawn in editing mode with a wide variety of colors. B. Photographs (up to 700 by 700
pixels) of deformed objects, such as these quartz pebbles, are imported in the display
window for tracing ellipses as shown in blue.
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elliptical objects, and estimate the strain. The greatest limitation of
this approach is the apparent complexity of the distribution of
undeformed elliptical objects (Boulter, 1976; Paterson and Yu,
1994). Yamaji (2005) developed an inverse method to overcome
some of these limitations for the special case of a bivariate normal
distribution of sedimentary particles. Another limitation to Elliott’s
(1970) approach, and a possible explanation for why the method
has been underutilized, is the significant difficulty most users have
with visualizing the effect of strain on elliptical objects in polar
plots. Our program helps overcome the latter limitation by showing
how Cartesian and polar Rf–F plots change during deformation.

Lisle’s (1985) approach to testing the assumption of an initially
random distribution of pebble long axes was to create a set of
‘‘marker deformation grids’’ using Cartesian Rf–F plots, and to
examine the distribution pattern of deformed ellipses. Sets of
pebbles that were consistent with the assumption should show
a symmetrical pattern about both the harmonic mean of Rf and the
vector mean of F. De Paor (1988) developed another novel and
useful approach to the Rf–F method that uses a hyperbolic net and
symmetry principles to estimate strain from ellipsoids, but our
program does not include hyperbolic plots.

Several commercially available drafting programs allow users to
create a set of elliptical objects and to simulate deformation with
tools that linearly transform the ellipses by pure shear, simple
shear, and rigid rotation. These programs are very useful for
teaching purposes. Also, several commercial programs are available
that permit researchers to determine strain with the Rf–F method
using axial ratio and orientation data. Some of these programs
incorporate statistical methods to assess the validity of the
assumption of initial random distribution of long-axis orientations.
We have not duplicated the capabilities of these programs. Instead,
we developed a relatively simple program that focuses on visual-
izing the relationship between strained elliptical objects and plots
of axial ratio vs. orientation. Our program is complimentary to the
existing software because it is straightforward to examine
deformed objects with our program and then, to export informa-
tion about the ellipses to data files for use in these programs.

Our goal was to create a simple and easy-to-learn interactive
computer program that allows the user to simulate deformation of
elliptical objects by pure shear, simple shear, and rigid rotation.
Throughout the linear transformations, Cartesian or polar Rf–F

plots are continuously and instantaneously updated. The advantage
of this program is that the color coding and tracking options make it
possible to visualize the distribution and paths of points repre-
senting elliptical objects on Rf–F plots. This is especially valuable
for the polar plots of ln(Rf) vs. 2(F), and it helps highlight the
potential of this neglected approach. We also show here how the
program is used to introduce students to the Rf–F method, deter-
mine strain in natural samples, and simulate ‘retro-deformation’ of
samples to recover the original shapes and orientation of the
pebbles for critical evaluation of the method. This program is
written in Java, and so can run on virtually any operating system.
Both the source code and the finished application will be freely
available for academic purposes.
2. Summary of the program

The program contains a large display window on the left and
a display control window on the right (Fig. 1A). Ellipses are created
in the display area by dragging with the mouse in editing mode. The
user can import a 700 by 700 pixel photograph or other image as
a background, and trace elliptical objects from it (Fig. 1B). Alter-
natively, text files containing information about the position, shape,
and orientation of elliptical objects can be loaded. An Excel Work-
book that serves as a template for creating such files is included
with the program. Several buttons control the appearance of the
ellipses and the scale and position of the display (Table 2). All
pebbles in the display area are plotted in the small Rf vs. F plot in
the display control window as they are created (Fig. 1A).

The user can choose deformation by simple shear, pure shear, or
rigid rotation with the radio buttons (Fig. 1). Once a radio button is
chosen, deformation can be precisely specified or accomplished by
click and drag with the mouse in the display area. During simulated
deformation, the Rf vs. F plot is continuously and instantaneously
updated as ellipses change shape and orientation in the display
area. A larger and more versatile Rf vs. F plot appears when the user
clicks the Big Cartesian Plot button. The Big Polar Plot button



Table 2
Abbreviated explanation of GeoShear command buttons to illustrate available functions

Command Function

Load ellipse file Loads an existing ellipse data file that contains shape, orientation position, and color information.
Help Brings up the help window.
About Displays information about this program.
Display editor Allows you to draw elliptical objects with the mouse, load a background image, and trace ellipses from a background image.
Load background Loads an image background for tracing elliptical objects.
Pebble color Double-click on the box to change the color. Change the color of all selected pebbles by ALT-clicking on the color box.
Pebble axes Toggles between showing and hiding long and short axes of elliptical objects.
Fill pebbles Toggles between filled and outlined pebbles.
Background Toggles between showing and hiding the loaded background.
Zoom Change the magnification of the cross-section from 20% to 500%.
Reset Removes all deformation, positioning, and magnification changes.
Re-center display Re-centers the display but preserves deformation. The display may be moved off center by holding down the ALT key and dragging in the display

area.
Un-zoom Returns display to the default magnification of 100%.
Simple shear Constrains deformation to be by simple shear. Click and drag in the display to deform elliptical objects. You can also type in exact values for simple

shear in the horizontal and/or vertical directions in the rectangles below the radio button.
Pure shear Constrains deformation to be by pure shear. Click and drag in the display to deform elliptical objects. You can also type in exact values for

extension in the horizontal and vertical directions in the rectangles below the radio button.
Area not Preserved

(click to change)
Toggles between three options. The first allows area to change during pure shear. Area Preserved, Y Ind. Var. lets you specify the vertical
extension and adjusts horizontal extension to preserve area. Area Preserved, X Ind. Var. lets you specify the horizontal extension and adjusts
vertical extension to preserve area.

Lock in current
deformation

Used when switching from simple shear, pure shear, or rotation, to another deformation mode. Resets frame of reference.

Rotate Constrains deformation to be by rotation. Click and drag in the display to rotate objects. You can also type in exact rotation angles as either degree
or radians.

Big Cartesian Plot A larger Cartesian Rf vs. F plot opens up in a new, re-sizeable window if this button is pressed.
Big Polar Plot A polar plot of ln(Rf) vs. 2(F) opens up in a new, re-sizeable window if this button is pressed.
Save to ges Save the starting display to a file. The file retains the background and all the elliptical objects, but not subsequent deformation or other display

changes.
Save deformed Save a deformed display, but not the original shapes.
Export to tab Saves the undeformed pebble information to a tab-delimited file.
Export deformed Saves the deformed pebble information to a tab-delimited file.
Camera Take a snapshot of the current display. It will capture whatever is in the display area as a PNG, BMP, or JPG image.
Exit Exits the program without saving anything.
Strain ellipse info This area displays information about the strain ellipse (the grey circle in the center that you can see when no background is displayed).
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summons a polar plot of ln(Rf) vs. 2(F), which tracks deformation of
elliptical objects in a different and very useful manner (Elliott,
1970), as discussed below. The program allows the user to save an
image of both types of plots.

Original and deformed displays can be saved for further study.
Data files containing information about the original or deformed
shape, orientation, and position of pebbles can be created for
statistical analysis or use with commercially available programs.
Snapshots of the display can be captured, and a sequence of such
images, combined with snapshots of the Rf–F plots, can be used to
create animations of deforming pebbles and the corresponding
changes in the graphical representation of the deformation.

The program applies the specified linear transformation to
simulate deformation of ellipses in the display area. The program
then uses a simple numerical analysis process to determine the
axial ratio of the transformed objects. For each ellipse, it gets a list
of points along the circumference, and then calculates the distance
from the center to each of those points. As it steps through those
calculations, it tracks the longest and shortest of those distances,
thus finding the long and short axes. To maximize the accuracy and
efficiency of the axial ratio approximation, the program uses
a number of circumference points close to the number of pixels
used to create the ellipse. The analytical equations for F and Rf

derived by Ramsay (1967, pp. 205–209) and summarized by Lisle
(1985, p. 3) can be used to track deforming ellipses, particularly
when their shapes and orientations are loaded from a file (e.g.
Fig. 1A). However, when ellipses are traced from an image (e.g.
Fig. 1B), a numerical routine similar to the one we use is needed to
determine the initial shape and orientations of objects. The routine
we use mimics what geologist actually do when they measure
naturally deformed elliptical objects.
3. Demonstrating the Rf–F method to students

Fig. 2A shows five color-coded groups of ellipses from the
display screen with initial axial ratios equal to 1.2, 1.6, 2.0, 2.4, and
2.8. The long axes of the ellipses are initially oriented in 10�

increments. We created this group of ellipses as a teaching aid using
the Excel Workbook distributed with the program. It is designed to
simulate a group of pebbles with an initially random distribution of
long-axis orientations, and a limited range of axial ratios. Fig. 2B
shows the Rf vs. F plot for this ‘undeformed’ array of ellipses. The
points are colored the same as the corresponding ellipses, to
facilitate tracking, and they are distributed over the entire range of
F values. Two ellipses with axial ratios of 2.8, whose long axes are
oriented horizontally and vertically are selected in 2A, and they
appear as larger points in 2B to highlight the paths of these objects
during simulated deformation. Also selected in 2A is the large gray
unit circle to help track the value of the ‘‘strain ellipse’’ in the Rf–F

plots. Fig. 2C shows the polar plot of ln(Rf) vs. 2(F) for the unde-
formed array of ellipses. The points are also colored the same as the
ellipses in 2A, and the points form a radial distribution around
the origin of the polar plot with more elliptical objects farther from
the origin.

The ellipses undergo a simulated vertical, pure shear shortening
with strain ratio of 1.4 (Fig. 2D). The Rf–F plot (Fig. 2E) shows that
the ellipses with initial axial ratios of 1.2 now form a closed loop.
The polar plot of ln(Rf) vs. 2(F) (Fig. 2F) shows that the points
corresponding to the group of ellipses with an initial axial ratio of
1.2 now lie entirely to the right of the origin. This pattern reflects
the fact that the strain (Rs¼ 1.4) was great enough to transform an
initial ellipse (Ri¼ 1.2), whose long axis was perpendicular to the
stretching direction, to a circular object (R¼ 1), and then into an



Fig. 2. Screen captures of the display window and Cartesian and polar Rf–F plots. A. Undeformed (axial ratio of strain ellipse, Rs¼ 1) array of color-coded ellipses. B. Plot of Rf vs. F

for the unstrained configuration of ellipses shown in A. C. Polar plot of ln(Rf) vs. 2F for the unstrained configuration of ellipses shown in A. D. Ellipses shown in A after vertical
shortening by pure shear such that the axial ratio of the strain ellipse, Rs, is equal to 1.4. E. Plot of Rf vs. F for the ellipses shown in D. F. Polar plot of ln(Rf) vs. 2F for the ellipses
shown in D. G. Ellipses shown in A after vertical shortening by pure shear such that the axial ratio of the strain ellipse, Rs, is equal to 3. H. Plot of Rf vs. F for the ellipses shown in G. I.
Polar plot of ln(Rf) vs. 2F for the ellipses shown in G. Note that the display screens in D and G were rescaled to show all the pebbles after deformation. Rfmax and Rfmin in E and H are
the maximum and minimum axial ratios used to find the values of the strain ellipse, Rs, and maximum initial axial ratio, Rimax, in Eqs. (1–4).
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ellipse whose long axis is parallel to the stretching direction
(Rf¼ 1.17). In contrast, groups of ellipses with initial axial ratios
greater than that of the strain ellipse form open configurations in
the Rf–F plot over the entire range of F values. This pattern reflects
the fact that elliptical objects, whose axial ratios are greater
than the strain ellipse ratio, and whose long axes are perpendicular
to the stretching direction, become less elliptical, but their long
axes do not change orientation during pure shear.
Continuing this example, the shortening is increased to a strain
ratio of 3:1 (Fig. 2G). At Rs¼ 3, points representing all the ellipses
form concentric closed loops on the Rf vs. F plot (Fig. 2H) because Rs

is greater than the maximum initial ellipticity of 2.8. On the polar
plot (Fig. 2I), all of the points lie to the right of the origin and together
they form a noticeably elliptical, rather than a circular, distribution.

The images in Fig. 2 illustrate, in an effective but static fashion,
the relationship between the strained elliptical shapes and the
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Cartesian and polar Rf–F plots. Using the program is much more
compelling, however, because the Rf–F plots are continuously and
instantaneously updated as the ellipses are strained in the display
window, and the user can rapidly perform experiments that visu-
ally relate strain to the plots.

To find the Rf and F values for individual objects, the user clicks
on the point in the plots and reads the coordinates at the bottom of
the window. Thus, it is easy to determine the values of Rfmax and
Rfmin on the Rf vs. F plots (Fig. 2E and H), and to use them to
calculate the maximum initial ellipticity, Rimax, and the axial ratio of
the strain ellipse, Rs, using the equations provided by Ramsay and
Huber (1983, p. 77). For example in Fig. 2E, Rfmax¼ 4.1 and
Rfmin¼ 2.1. Using these values in the equations for an open
configuration:

�
Rfmax*Rfmin

�1=2
¼ Rimax; and (1)

�
Rfmax=Rfmin

�1=2
¼ Rs; (2)

yields Rimax¼ 2.9, and Rs¼ 1.4. In Fig. 2H the maximum and
minimum values are 8.9 and 1.1. Using these values in the equations
for a closed configuration:

�
Rfmax=Rfmin

�1=2
¼ Rimax; (3)

�
Rfmax*Rfmin

�1=2
¼ Rs; (4)

gives Rimax¼ 2.8, and Rs¼ 3.1. Both of these results are in good
agreement with the actual values for strain and maximum initial
ellipticity used in the simulations.

For an initially random distribution of elliptical objects, finding
the Rs value in the polar plots is very straightforward. It requires
locating the ‘center’ of the points representing all of the ellipses and
clicking on it. The ln(Rf) and the Rf values are given at the bottom of
the plot. One of the inherent challenges of the Rf–F method is
identifying outliers (pebbles with unusually large initial ellipticity
values) on the Rf vs. F plot so that they may be neglected when
finding the values of Rfmax and Rfmin to use in Eqs. (1) and (2) for
open configurations or Eqs. (3) and (4) for closed configurations
(Ramsay and Huber, 1983). Using the polar plot circumvents this
problem by focusing on the center of the distribution of points,
rather than on the maximum and minimum values. Thus, the
correct identification of outliers is much less critical.

Fig. 2E and H help illustrate an important limitation of the Rf–F

method. It is only reliable if the undeformed rock contained a large
number of objects that possessed the greatest initial axial ratio, Rimax,
and the long axes of these objects were not preferentially oriented.
Both criteria must be met to create a robust open (Fig. 2E) or closed
(Fig. 2H) configuration for determining Rfmax and Rfmin. If only
a limited number of objects with greatest initial ratio are present, or
if the long axes are preferentially oriented over a limited angular
range, the values for Rfmax and Rfmin obtained from Cartesian Rf–F

plots will be based on pebbles with different initial ellipticity (for
example, purple and yellow ellipses in Fig. 2). This situation will
produce an inaccurate strain estimate. Tracking specific points
allows the user to see that after deformation, objects with maximum
initial axial ratios (Ri¼ Rimax), and with long axes parallel to the
maximum extension direction, will have the greatest final axial ratio
(Rimax*Rs¼ Rfmax). In contrast, objects with maximum initial axial
ratios (again, Ri¼ Rimax), but with long axes perpendicular to the
maximum extension direction will have the minimum final axial
ratio (Rimax/Rs¼ Rfmin). If the observed values for Rfmax and Rfmin
come from unique outliers, that is to say, pebbles with significantly
different initial ratios, Ri, the strain estimate will not be reliable.

4. Applying the Rf–F method for strain determinations

Fig. 3A shows the program window with a background image of
a deformed quartz-pebble conglomerate from the Dalton Forma-
tion, located in Dalton, Massachusetts, USA. The photograph was
converted into a 700 by 700 pixel image before being loaded as
a background. The blue ellipses were traced from the deformed
pebbles in the editing mode by clicking and dragging with a mouse.
An experienced user can trace fifty pebbles in approximately 5 min,
so it is an efficient method for determining the axial ratio and long-
axis orientation of deformed pebbles, compared with measuring
individual pebbles with a ruler and protractor. The ellipses gener-
ated by the program rarely conform to the shape of naturally
deformed objects. Thus, using the program to trace pebbles high-
lights the important, yet commonly overlooked, fact that naturally
deformed objects are not perfect ellipses. As pebble outlines are
traced with a mouse, the corresponding Rf and F values are plotted
in Cartesian (Fig. 3B) and polar (Fig. 3C) plots.

After the pebbles are traced, the Rf–F plot (Fig. 3B) can be used
to find the values of Rfmax and Rfmin (as shown in Fig. 2E and H).
Once these values are obtained, it is straightforward to calculate the
ratio of the strain ellipse, Rs, and the maximum initial ellipticity,
Rimax, using Eqs. (1) and (2) for open configurations, or Eqs. (3) and
(4) for closed configurations.

Another approach, which offers greater insight into the strain
state, is to use the program to find the most likely inverse strain
ellipse, and thereby recover the ‘undeformed’ shapes and distri-
bution of the pebbles. This is most easily done in two steps, and the
process takes advantage of the fact that an arbitrary linear trans-
formation can be expressed as a pure shear (transformation by
a diagonal matrix) followed by a rotation (transformation by an
anti-symmetric matrix). These steps are reversed for an inverse
transformation (inverse strain).

Fig. 3D shows the pebble outlines after a counter-clockwise rigid
rotation of 9�, a value found by trial and error and chosen because it
creates a symmetric distribution of points about the F¼ 0 axis in
the Rf vs. F plot (Fig. 3E), and the 2F¼ 0 axis in the polar ln(Rf) vs.
2F plot (Fig. 3F). The second step is to apply horizontal shortening
by pure shear, and create the most dispersed possible distribution
of points over the entire range of F values (Fig. 3H). A dispersed
pattern of points, as seen in Fig. 3H, simulates an initially random
distribution of long-axis orientations. An equivalent approach is to
create a radial distribution of points centered at the origin of the
polar plot of ln(Rf) vs. 2F to simulate an initially random distribu-
tion of long-axis orientations (Fig. 3I).

The axial ratio of the inverse strain ellipse determined by the
inverse graphical method is 3.7. This strain estimate is similar to the
value of Rs¼ 3.67 as calculated using Eq. (4) with values of
Rfmin¼ 1.95 and Rfmax¼ 6.93, as measured from Fig. 3B. Likely
outliers were neglected when selecting the Rfmin and Rfmax values.
By comparison, field measurements at the outcrop using a ruler and
protractor gave a strain estimate of 3.75 using the standard Rf–F

method (Ramsay and Huber, 1983). As expected, the agreement
between the three approaches is excellent. The inverse graphical
strain method, however, has the advantage of allowing visual
inspection of the starting configuration of the pebbles. The value of
direct field measurements cannot be overstated, and should always
be the highest priority. However, it is not always possible to
measure objects on inaccessible surfaces in the field, and our
program is well suited for working with photographs of hard-to-
reach outcrop surfaces, as well as photographs of slabbed hand
samples and thin sections.



Fig. 3. Screen captures of the entire program window and the Cartesian and polar Rf–F plots. A. Photograph (700 by 700 pixels) of deformed quartz-pebble conglomerate imported
as background image. B. Plot of Rf vs. F of the deformed pebbles in A. C. Polar plot of ln(Rf) vs. 2F of the deformed pebbles in A. D. Pebble outlines after 9� of counter-clockwise rigid
rotation. E. Plot of Rf vs. F of the pebbles after 9� of counter-clockwise rigid rotation. F. Polar plot of ln(Rf) vs. 2F of the pebbles after 9� of counter-clockwise rigid rotation. G. Pebble
outlines after horizontal shortening by pure shear such that the axial ratio of the inverse strain ellipse is equal to 3.7. Note that the display screen in G was rescaled to show all the
pebbles after deformation. H. Plot of Rf vs. F of the pebbles after horizontal shortening by pure shear such that the axial ratio of the inverse strain ellipse is equal to 3.7. The inverse
strain value was determined by trial and error to create the most dispersed distribution of points over the entire range of F values to simulate an initially random distribution of
long-axis orientations. I. Polar plot of ln(Rf) vs. 2F of the pebbles after horizontal shortening by pure shear such that the axial ratio of the inverse strain ellipse is equal to 3.7. The
inverse strain value was determined by trial and error to create a radial distribution of points centered at the origin to simulate an initially random distribution of long-axis
orientations.
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The graphical approach for finding inverse strain described
above is valuable because the initial shapes of the pebbles, and their
spatial distribution, can be easily portrayed (Fig. 3G). This func-
tionality makes it possible for researchers and students to assess
quickly and visually the plausibility of strain determinations using
the Rf–F method. Furthermore, although the examples presented
here assume no area change, the program can incorporate area
change if such data are available. Because the program runs
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graphical experiments very quickly, it is also practical to explore the
effects of varying area change if the direction of area loss can be
deduced from stylolites or pebble indentations (Onasch, 1984).

5. Conclusions

Although we do not provide new insight into the theory behind
the Rf–F method, we believe our program advances strain studies
for both educational and research purposes. Our main goal in
creating this program was to provide a visual link between
deforming elliptical objects and corresponding Rf–F plots, and we
endeavored to do this with an easy-to-learn application so atten-
tion can be focused on strain rather than learning how to use the
program. Instructors can use the main display window to demon-
strate fundamental principles of strain, such as the difference
between coaxial and non-coaxial strain, and the relationship
between strain and deformation fabric. The program also allows
students to see how deformation of a group of ellipses is man-
ifested in Rf–F plots, and how strain can be estimated from such
a population. The digitizing capabilities of the program make it
possible for students to quickly generate Rf–F plots from photo-
graphs of deformed conglomerate or oolitic limestone, making it
more practical to assign such problems.

The program generates both the familiar Cartesian Rf–F plots
and polar plots of ln(Rf) vs. 2(F), as suggested by Elliott (1970).
Direct comparison of the two kinds of plots highlights the advan-
tages and disadvantages of each. Although the polar plots are
somewhat more difficult to relate to the shape and orientation of
elliptical objects, the program demonstrates that the initial array of
points representing ellipses is displaced with only moderate
distortion in the ln(Rf) vs. 2(F) plots (Figs. 2 and 3). Recognition and
elimination of statistical outliers is also much less critical when
using polar than Cartesian plots.

Researchers can use the program to digitize deformed objects
from imported photographs of outcrops, slabbed hand samples,
and thin sections. Strain can be determined directly from the Rf–F

plots using the standard equations, or by retro-deformation of the
ellipses, as described above. The advantage of the latter approach is
that it gives a view of the initial shape and distribution of objects,
and thereby permits a visual assessment of the validity of the strain
estimate. The program can model area change during deformation,
and graphical experiments can be performed rapidly, so it is
feasible to explore the effects of area change when evidence for
pressure solution exists (Onasch, 1984). The program does not
provide automated strain determinations or testing of initially
random distribution of ellipses. It is easy, however, to export data
files with information about the position, axial ratio, and long-axis
orientation of ellipses. Such files can then be used for statistical and
graphical analysis to test rigorously strain models, and the
assumptions on which they are based. Data files generated by our
program can also be imported into commercially available
programs that perform symmetry and distribution tests on
deformed objects.

The program, which we call GeoShear, along with a photograph
of a deformed conglomerate, files of synthetic ellipses, and an
Excel workbook that serves as a template for creating new files
can be downloaded at: http://www.williams.edu/Geoscience/
facultypages/Paul/currentresearch.html.
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